알고리즘 문제/Leetcode
703. Kth Largest Element in a Stream
BEstyle
2023. 1. 24. 22:34
Design a class to find the kth largest element in a stream. Note that it is the kth largest element in the sorted order, not the kth distinct element.
Implement KthLargest class:
- KthLargest(int k, int[] nums) Initializes the object with the integer k and the stream of integers nums.
- int add(int val) Appends the integer val to the stream and returns the element representing the kth largest element in the stream.
Example 1:
Input
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
Output
[null, 4, 5, 5, 8, 8]
Explanation
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3); // return 4
kthLargest.add(5); // return 5
kthLargest.add(10); // return 5
kthLargest.add(9); // return 8
kthLargest.add(4); // return 8
Constraints:
- 1 <= k <= 104
- 0 <= nums.length <= 104
- -104 <= nums[i] <= 104
- -104 <= val <= 104
- At most 104 calls will be made to add.
- It is guaranteed that there will be at least k elements in the array when you search for the kth element.
#https://leetcode.com/problems/kth-largest-element-in-a-stream/description/
'''
1. 아이디어 :
1) 이진탐색으로 구할 수 있다
2) 힙으로 풀 수 있다.
2. 시간복잡도 :
1) init, add = 배열에 추가하고 정렬-O(n) / 이진탐색으로 하나씩 추가-O(logn)
2) init = O(n) , add = 2 * O(logn)
3. 자료구조 :
'''
# 2)
class KthLargest:
def __init__(self, k: int, nums: List[int]):
self.minHeap = nums
self.k = k
heapq.heapify(nums)
while len(self.minHeap)>k:
heapq.heappop(self.minHeap)
def add(self, val: int) -> int:
heapq.heappush(self.minHeap, val)
if len(self.minHeap)> self.k:
heapq.heappop(self.minHeap)
return self.minHeap[0]
# Your KthLargest object will be instantiated and called as such:
# obj = KthLargest(k, nums)
# param_1 = obj.add(val)
# 1)
'''
class KthLargest:
def __init__(self, k: int, nums: List[int]):
self.numList = sorted(nums)
self.k = k
def add(self, val: int) -> int:
start = 0
end = len(self.numList)-1
def binary_search(numList, value):
start = 0
end = len(numList)
while start<=end:
mid = (start+end)//2
if mid >= len(numList):
return len(numList)
if self.numList[mid] == value:
return mid
elif self.numList[mid] < value:
start = mid + 1
elif self.numList[mid] > value:
end = mid - 1
return start
index = binary_search(self.numList,val)
self.numList.insert(index, val)
return self.numList[len(self.numList)-self.k]
'''