You want to water n plants in your garden with a watering can. The plants are arranged in a row and are labeled from 0 to n - 1 from left to right where the ith plant is located at x = i. There is a river at x = -1 that you can refill your watering can at.
Each plant needs a specific amount of water. You will water the plants in the following way:
- Water the plants in order from left to right.
- After watering the current plant, if you do not have enough water to completely water the next plant, return to the river to fully refill the watering can.
- You cannot refill the watering can early.
You are initially at the river (i.e., x = -1). It takes one step to move one unit on the x-axis.
Given a 0-indexed integer array plants of n integers, where plants[i] is the amount of water the ith plant needs, and an integer capacity representing the watering can capacity, return the number of steps needed to water all the plants.
Example 1:
Input: plants = [2,2,3,3], capacity = 5
Output: 14
Explanation: Start at the river with a full watering can:
- Walk to plant 0 (1 step) and water it. Watering can has 3 units of water.
- Walk to plant 1 (1 step) and water it. Watering can has 1 unit of water.
- Since you cannot completely water plant 2, walk back to the river to refill (2 steps).
- Walk to plant 2 (3 steps) and water it. Watering can has 2 units of water.
- Since you cannot completely water plant 3, walk back to the river to refill (3 steps).
- Walk to plant 3 (4 steps) and water it.
Steps needed = 1 + 1 + 2 + 3 + 3 + 4 = 14.
Example 2:
Input: plants = [1,1,1,4,2,3], capacity = 4
Output: 30
Explanation: Start at the river with a full watering can:
- Water plants 0, 1, and 2 (3 steps). Return to river (3 steps).
- Water plant 3 (4 steps). Return to river (4 steps).
- Water plant 4 (5 steps). Return to river (5 steps).
- Water plant 5 (6 steps).
Steps needed = 3 + 3 + 4 + 4 + 5 + 5 + 6 = 30.
Example 3:
Input: plants = [7,7,7,7,7,7,7], capacity = 8
Output: 49
Explanation: You have to refill before watering each plant.
Steps needed = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 6 + 6 + 7 = 49.
Constraints:
- n == plants.length
- 1 <= n <= 1000
- 1 <= plants[i] <= 106
- max(plants[i]) <= capacity <= 109
class Solution:
def wateringPlants(self, plants: List[int], c: int) -> int:
p=[0]+plants
ans=0
cmax=c
for i in range(1,len(p)):
if c>=p[i]:
c-=p[i]
ans+=1
elif c<p[i]:
ans+=(2*i)-1
c=cmax-p[i]
return ans
'알고리즘 문제 > Leetcode' 카테고리의 다른 글
1561. Maximum Number of Coins You Can Get (0) | 2023.04.17 |
---|---|
1557. Minimum Number of Vertices to Reach All Nodes (0) | 2023.04.17 |
1551. Minimum Operations to Make Array Equal (0) | 2023.04.17 |
1877. Minimize Maximum Pair Sum in Array (0) | 2023.04.17 |
2405. Optimal Partition of String (0) | 2023.04.17 |